Chemical Force Microscopy: Exploiting Chemically-Modified Tips To Quantify Adhesion, Friction, and Functional Group Distributions in Molecular Assemblies
نویسندگان
چکیده
Chemical force microscopy (CFM) has been used to measure adhesion and friction forces between probe tips and substrates covalently modified with self-assembled monolayers (SAMs) that terminate in distinct functional groups. Robe tips have been modified with SAMs using a procedure that involves coating commercial Si3N4 cantilevedtip assemblies with a thin layer of polycrystalline Au followed by immersion in a solution of a functionalized thiol. This methodology provides a reproducible means for endowing the probe with different chemical functional groups. The spring constants and radii of the chemically modified cantilevedtip assemblies have been characterized to allow for quantitative friction and adhesion measurements. Au-coated Si and Si substrates have been treated with functionalized thiols and silanes, respectively, to produce SAM coated substrates terminating with different functional groups. A force microscope has been used to characterize the adhesive interactions between probe tips and substrates that have been modified with SAMs which terminate with COOH, CH3, and N H 2 functional groups in EtOH and HzO solvents. Force vs distance curves recorded under EtOH show that the interaction between functional groups decreases as follows: COOWCOOH > CHdCH3 > COOWCH3. The measured adhesive forces were found to agree well with predictions of the Johnson, Kendall, and Roberts (JKR) theory of adhesive contact and thus show that the observed adhesion forces correlate with the surface free energy of the molecular groups in EtOH. Electrostatic contributions to adhesive forces have also been studied using a COO-/NH3+ tip/surface in aqueous solution. Force vs distance curves recorded as a function of ionic strength show that the observed adhesive interaction decreases with increasing ionic strength. These results have been interpreted in terms of contact and noncontact contributions to the experimentally measured adhesive force. The friction forces between tips and samples modified with COOH and CH3 groups have also been measured as a function of applied load. The magnitude of the friction force was found to decrease in the following manner with different tip/sample functionalities: COOWCOOH > CH3/CH3 > COOWCH3. Friction forces between different chemical functional groups thus correlate directly with the adhesion forces between these same groups. Specifically, high friction is observed between groups that adhere strongly, while low friction is observed between weakly interacting functional groups. The dependence of friction forces on the tip and sample functionality is shown to be the basis for chemical force microscopy in which lateral force images are interpreted in terms of the strength of both adhesive groups.
منابع مشابه
Chemical Force Microscopy Nanoscale Probing of Fundamental Chemical Interactions
Intermolecular forces impact a wide spectrum of problems in condensed phases: from molecular recognition, self-assembly, and protein folding at the molecular and nanometer scale, to interfacial fracture, friction, and lubrication at a macroscopic length scale. Understanding these phenomena, regardless of the length scale, requires fundamental knowledge of the magnitude and range of underlying w...
متن کاملForce Titrations and Ionization State Sensitive Imaging of Functional Groups in Aqueous Solutions by Chemical Force Microscopy
Chemical force microscopy (CFM) was used to probe interactions between ionizable and neutral functional groups in aqueous solutions. Force microscope probe tips and sample substrates have been covalently modified with self-assembled monolayers (SAMs) terminating in distinct functional groups. SAMs were prepared by treating Au-coated or uncoated tips and substrates with functionalized thiols or ...
متن کاملToward a Force Spectroscopy of Polymer Surfaces
The adhesional forces between a series of polymer film surfaces and chemicallywell-defined atomic force microscopy tips have been measured and found to depend strongly on the chemical nature of both probe and sample surfaces. For a given series of polymers, the ranking in adhesion strength was markedly different for polar and nonpolar probes, irrespective of the precise chemical composition of ...
متن کاملDiscrimination of DNA hybridization using chemical force microscopy.
Atomic force microscopy (AFM) can be used to probe the mechanics of molecular recognition between surfaces. In the application known as "chemical force" microscopy (CFM), a chemically modified AFM tip probes a surface through chemical recognition. When modified with a biological ligand or receptor, the AFM tip can discriminate between its biological binding partner and other molecules on a hete...
متن کاملCharacterizing NF and RO membrane surface heterogeneity using chemical force microscopy
Chemical force microscopy (CFM) was used to characterize the chemical heterogeneity of two commercially available nanofiltration and reverse osmosis membranes. CFM probes were modified with three different terminal functionalities: methyl (CH3), carboxyl (COOH), and hydroxyl (OH). Chemically distinct information about the membrane surfaces was deduced based on differences in adhesion between th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001